翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

AI planning : ウィキペディア英語版
Automated planning and scheduling

Automated planning and scheduling, in the relevant literature often denoted as simply planning, is a branch of artificial intelligence that concerns the realization of strategies or action sequences, typically for execution by intelligent agents, autonomous robots and unmanned vehicles. Unlike classical control and classification problems, the solutions are complex and must be discovered and optimized in multidimensional space. Planning is also related to decision theory.
In known environments with available models, planning can be done offline. Solutions can be found and evaluated prior to execution. In dynamically unknown environments, the strategy often needs to be revised online. Models and policies must be adapted. Solutions usually resort to iterative trial and error processes commonly seen in artificial intelligence. These include dynamic programming, reinforcement learning and combinatorial optimization. Languages used to describe planning and scheduling are often called action languages.
== Overview ==

Given a description of the possible initial states of the world, a description of the desired goals, and a description of a set of possible actions, the planning problem is to find a plan that is guaranteed (from any of the initial states) to generate a sequence of actions that leads to one of the goal states.
The difficulty of planning is dependent on the simplifying assumptions employed. Several classes of planning problems can be identified depending on the properties the problems have in several dimensions.
* Are the actions deterministic or nondeterministic? For nondeterministic actions, are the associated probabilities available?
* Are the state variables discrete or continuous? If they are discrete, do they have only a finite number of possible values?
* Can the current state be observed unambiguously? There can be full observability and partial observability.
* How many initial states are there, finite or arbitrarily many?
* Do actions have a duration?
* Can several actions be taken concurrently, or is only one action possible at a time?
* Is the objective of a plan to reach a designated goal state, or to maximize a reward function?
* Is there only one agent or are there several agents? Are the agents cooperative or selfish? Do all of the agents construct their own plans separately, or are the plans constructed centrally for all agents?
The simplest possible planning problem, known as the Classical Planning Problem, is determined by:
* a unique known initial state,
* durationless actions,
* deterministic actions,
* which can be taken only one at a time,
* and a single agent.
Since the initial state is known unambiguously, and all actions are deterministic, the state of the world after any sequence of actions can be accurately predicted, and the question of observability is irrelevant for classical planning.
Further, plans can be defined as sequences of actions, because it is always known in advance which actions will be needed.
With nondeterministic actions or other events outside the control of the agent, the possible executions form a tree, and plans have to determine the appropriate actions for every node of the tree.
Discrete-time Markov decision processes (MDP) are planning problems with:
* durationless actions,
* nondeterministic actions with probabilities,
* full observability,
* maximization of a reward function,
* and a single agent.
When full observability is replaced by partial observability, planning corresponds to partially observable Markov decision process (POMDP).
If there are more than one agent, we have multi-agent planning, which is closely related to game theory.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Automated planning and scheduling」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.